Why Go Handheld for Skin Temperature Screening?
Mobile, quick to set up, and ready to go in minutes

As businesses and venues begin to reopen, FLIR handheld thermal cameras can be a first line of defense against potential health risks. These cameras allow operators to screen people from a safe distance, detecting and visualizing heat to quickly identify individuals with an elevated skin temperature.

Fast, accurate, and easy to use

- Built-in Screen-EST Mode has visible/audible alarms for rapid decision-making
- Ambient drift compensation ensures accurate measurement regardless of environmental conditions
- Works with FLIR Screen-EST Desktop software for full-featured, automatic screening

Bright touchscreen display and pre-programmed buttons streamline initial set-up
Up to 4 hours of battery operation, or use external power
Integrated tripod mount for when hands-free use is needed

MAINTAINS SAFETY & PRIVACY

FLIR skin temperature screening solutions are non-contact, safe, and private. Thermal imagery displays heat—not identifying facial features—and FLIR thermal screening software does not require the capture, recording, or transmitting of personally identifiable information.

LEARN MORE
Why Go Handheld for Skin Temperature Screening?

Screen-EST™ is a simplified method for measuring elevated skin temperature that can sound or display an alarm when the camera detects an object or person with an elevated temperature compared against a sampled average temperature value. If the software detects an individual with elevated skin temperature, they can then be evaluated using a medical device such as a thermometer. In this way, FLIR Screen-EST provides a faster, safer method of screening people in high-traffic areas.

Note that FLIR Screen-EST Desktop requires dual-streaming capability which can be added to FLIR handheld cameras as a firmware upgrade.

DISCLAIMER: FLIR devices are intended for use as an adjunct to clinical procedures in the screening of skin surface temperature. Various environmental and methodological factors can impact thermal imaging; therefore, it should not be relied upon as the sole determinant of a person's body temperature. Use of a medical device will be needed to identify elevated body temperature.

Screening accuracy (drift) ±0.3°C (±0.5°F)

Object temperature range 10°C to 45°C (59°F to 113°F)

Frame rate 30 Hz

Included lens 24° (17 mm) or 42° (10 mm)

Screening accuracy (drift) ±0.3°C (±0.5°F)

Object temperature range 15°C to 45°C (59°F to 113°F)

Video out DisplayPort

Power Rechargeable Li ion battery, >2.5 hrs (typical use) Rechargeable Li ion battery, >4 hrs (typical use)

External power AC adapter 90-260 V AC, 50/60 Hz

Size (L x W x H) 278.4 x 116.1 x 113.1 mm (11.0 x 4.6 x 4.4 in.) 140 x 201.3 x 84.1 mm (5.5 x 7.9 x 3.3 in.)

Weight 1 kg (2.2 lb.) 1.3 kg (2.9 lb.)

Tripod mounting UNC ¼”-20